

For more activities and debate kits in this series go to debate.imascientist.org.uk

Debate Kit: Mars Mission Should we send a human mission to Mars?

A structured practice debate on a controversial topic.

The different 'rounds' of the debate help students think through the issues and reconsider their opinions. The structure also shows them how to build a discussion and back up their opinions with facts.

You can use all eight characters, or fewer, as you wish.

The minimum is the four essential characters (in bold), this gives two for and two against.

Characters

Yes - We should send a human space mission to Mars

- Bill McIntosh Spacecraft engineer
- Sarah Oakes Politician and space enthusiast
- Sudarat Jaa Planetary geologist
- Derek Amundsen Physiologist

No - We should not send a human space mission to Mars

- Penny O'Hara Helicopter pilot
- Robert Pinxton Astrobiologist
- Greta Stevens Spacecraft engineer
- Kai Buchanan Ecologist

Facilitation tips

Ensure pupils know there is no right or wrong answer.

Be observant of ones who want to speak and are not getting a chance. Encourage students to give a reason for their opinions.

KS4: These debate kits have been used with ages 11-18

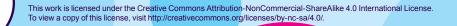
For groups who may need extra support you can put the following prompt sentences upon the board:

- "I think we should/shouldn't send humans to Mars because...."
- "I think is the most important point to think about."

Learning objective:

- · To practise discussing and debating issues and expressing an opinion.
- Understand more of the technical, physiological, social and ethical issues around human space exploration.

Other learning outcomes:


- Consider social, ethical and factual issues in an integrated way.
- Think about different points of view.
- Learn to back up their opinions with facts.

Curriculum points covered:

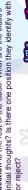
Working scientifically

- Understanding of the limitations of science and ethical issues which may arise.
- Evaluating personal, social, economic, and environmental implications and making decisions based on evidence and arguments.
- Evaluating risks and the perception of risks in the wider societal context.

Teacher Notes

Question:

Should we send a human mission to Mars?


Lesson plan

think through the issues and reconsider their opinions. The structure also shows them how to build a discussion The different 'rounds' of the debate help students and back up their opinions with facts.

what are all the things that our bodies need, that are hard to What do they know about humans in space? When did the now? Thinking about what they know about human bodies. first humans visit space? Are there any humans in space

- 1) Split students into as many groups as characters you want to cover.
 - 2) Give them their character cards one per group, and give them a few minutes to read them over.

 3) Get one student in each group to read out their first section to the rest of the class. What are the class's

- 4) Take it in turns to read out their fact. Does it change the way they think?
- 6) Each team asks their question to the character of their 5) Read the issue. Any different feelings?

choice.

Support: To help students you can put the following prompt . is the most important point to think about." I think we should/shouldn't send humans to Mars sentences up on the board: because...

Plenary: 10 minutes

Vote for which position they agree with most (if there is one). Why? Which arguments were the most persuasive?

or only for the first round if you prefer. If it's all the way through, Note - Pupils can stay in roles all the way through the debate, give them a chance to express their own opinion at the end and in the plenary.

and/or their character's position in pairs, and then compare notes in fours. They've then had chance to rehearse some of might help to have them start by discussing the question For groups who are not confident at class discussion, it what they want to say before having to do it in front of the whole class

Background notes

NB, throughout this kit we have avoided any use of the words manned' or 'unmanned', in line with official Nasa style guide. Interesting discussion of this https://storify.com/elakdawalla/ finding-new-language-for-human-missions

It is a 'terrestrial planet' (i.e. Earthlike), meaning it is composed Mars is the fourth planet from the sun in our solar system. surface (unlike the 'Giant planets' like Jupiter and Saturn). mainly of silicate rocks and metals and has a solid planet It has a thin atmosphere.

Mars facts-at-a-glance

- Mass: 6.42×10^{23} kg (or 642 sextillion kg, about 11% that of Earth) Mean radius: 3,390 km (about 53% that of Earth)
 - Surface gravity: 3.71m/s² (about 38% that of Earth)
- Average temperature of atmosphere: -63°C (cf 15°C for Earth)
 - Length of year: 687 Earth days
 - Length of day: 24hr 40mins

Human missions to Mars?

But practically speaking, we'd have to solve a lot of issues first There are many arguments for and against sending humans to Mars (this is why we made it the basis of a debate kit!).

· How best to shield astronauts from cosmic radiation on the journey there and while on the surface of Mars. Things we don't know yet:

nospital in a wheelchair when they get back to Earth (which is why you never see triumphant returning astronauts waving for the news cameras)

We don't know what the effect of two years or more would be. The longest anyone has spent on the ISS is one year.

International Space University in Strasbourg. He said, "There are engineers do when we are bored: design different fantasy missions so many variables in how a human mission to Mars would work, As part of the research for this kit, we spoke to Chris Welch, it's a fascinating problem. To be honest, it's what spacecraft to Mars, to see if we can find a new way of making it work." Professor of Astronautics and Space Engineering at the

advantage of when they are closest to each other. (The nearest ends of their orbit, and the Sun is in between them). So if timed months to get from Earth to Mars, if the journey is timed to take until they can hit another close approach. (There is roughly 26 to set off months beforehand, heading for where you know the right, people could go to Mars and stay a short time (a couple months between closest approaches, but obviously you have For example, with present technology it would take roughly 7 they ever get is about 54.6 million km, the furthest apart they relatively close. Or they could wait on Mars for about a year ever get is about 401 million km, when they are at opposite of weeks), and then set off back while the two planets are planet is going to be when you get there.)

whole craft would land on the surface, or (more likely) the bulk of the craft would stay in orbit around Mars and a small lander Other variables are how big a craft we'd send, whether the

- in some way (as we won't be able to take enough with us), but launching spacecraft from Earth, but we'll have no chance to practice on Mars. We'll probably have to mine fuel from Mars · How to launch a spacecraft into space, from the surface of Mars for the return journey. We've had lots of practice at we don't know what, how, or when.
- We don't know enough about the long term physiological effects of space travel and how to mitigate them.
- way there, on Mars, and then all the way back providing air, We also don't really know how to keep humans alive all the microgravity, dealing with waste. Either we need to develop water, food, keeping them warm, combatting the effects of much better technology than we have now to do all these things. Or we send an enormous craft, which will be unfeasibly expensive to build and launch.

In a sense, it's mainly the sending bodies into space (and safely back) that makes it difficult, as we've already sent levels found on Earth. It's said it takes a day on Earth to optimised for the temperature/pressure/gravity/radiation numerous robotic craft. Human bodies are of course recover from each day in space.

don't have enough blood volume and their heart muscles and circulation are weak. Crew on the International Space Station (ISS) exercise for 2.5 hours a day, but they are still taken off to bones lose mass. Fluid is no longer pulled into the lower body by gravity, so pools in the upper body. The body responds by disuse of weight-bearing tissues - muscles waste away and reducing blood volume. When astronauts return to 1g, they Being in extremely low gravity means reduced loading and

mission, so that supplies are waiting there when the astronauts there/be built. What fuel the return trip would use. It's possible astronauts would live in on Mars, and how these would get to send robotic craft with cargo to Mars before the human arrive. But the astronauts would still have to find these on module would land on the planet. What kind of habitats the surface and assemble habitats, etc.

would be a difficult mission psychologically. Space agencies are environments' (for example, the Antarctic research base) to help them work out how to choose and how to train astronauts for a to Mars. At some points the Sun would be between Mars and working with psychologists who study 'isolated and contained Earth and the astronauts would be incommunicado for days or weeks. The crew would probably be four or five people. It At best there would be a 20 minute lag for communications mission like this.

Other resources:

The UK Space Agency and its partners have put together a programme of education activities related to the Principia mission. principia.org.uk/get-involved/

teachers to enhance the teaching and learning of STEM using space as ESERO-UK provides free resources, support and information for a context. stem.org.uk/esero/

We have collected a range of resources which can be used with this kit at: debate.imascientist.org.uk/mars-debate-kit-resources/

This work is licensed under the Creative Commons Attribution-NonCo 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

Robert Pinxton Astrobiologist

I am a scientist who looks for evidence of life on other planets. The more I study, the more I realise that we just don't know what life on other planets would be like.

Everything we know is based on the life we see here on Earth. We could be completely missing living things, just because they are nothing like what we recognise. There could be life on Mars, and we could accidentally contaminate the planet and destroy it.

Fact: Some interstellar dust is made of organic molecules. Some people think that life on Earth is all descended from viruses brought by comets.

Issue: We can't be sure there is no life on another planet before we get there. But we could destroy that life by going

Question: What right do we have to go and contaminate

other planets, just out of curiosity, like a spoilt child?

Penny O'Hara -Helicopter pilot

I was a mountaineer in my youth, and climbed some of the most dangerous mountains in the world. Now I fly a mountain rescue helicopter. I understand what makes people want to explore and take risks, but looking back, I was an idiot. Every day in microgravity, people's muscles and bones get weaker, their hearts get weaker. Every day on the journey and on Mars they'd be exposed to levels of cosmic radiation that we don't know how to shield them from. We don't even know the long term effects of these things.

Fact: It takes about a day on Earth to recover from a day in space. So two years in space would take two years to recover.

Issue: I don't think we as a society should send people on such a dangerous mission, even if they say they want to go.

Question: Would the people who are so keen on the idea

be happy if their brother or sister was going on the trip'

Kai Buchanan -Ecologist

I study desertification - how land turns into desert and stops being able to produce food or support plants and animals. Deserts are growing all over the world. I'm horrified that people talk about a Mars mission like it's a lifeboat for humans. We can't just give up on Earth, our home, and run away to another planet. We should stay here and put our energy into trying to fix this one.

Fact: It costs £10,000 per kg just to launch things into a low Earth orbit. A mission to Mars will cost hundreds of billions of pounds.

Issue: I think that money and all that brain power would be better spent trying to solve our problems here on Earth.

Question: Shouldn't we work out how to live sustainably on this planet before colonising a new one?

Derek Amundsen **Physiologist**

Physiologists study how the bodies of living organisms work. I specialise in how the human body responds to extreme conditions. We can learn so much by studying what happens to our bodies in space. And it's a fascinating challenge, working out how to design spacecraft and equipment to protect human bodies from space radiation, low temperatures, and the effects of microgravity. The hard thing about a mission to Mars is keeping humans alive on the space flight and when we get there.

Fact: Humans have evolved to live in the tropics. Our bodies are comfortable at 28°C, 1g of gravity, and 1 atmosphere of pressure. We can live in colder climates, because we invented clothes and houses.

Issue: We can find out so much we can't here on Earth.

Question: We could learn so much about health by studying the body's response to new

Debate

Sarah Oakes – Politician and space enthusiast

I think sending humans to Mars could be the Moon landings for a new generation. More than that, it's an incredible, amazing goal. Mars could be the start of the next phase for humanity. It will inspire so many people, and new inventions. I think it is our human destiny to do this. It could bring us together as a species, give us a common goal.

Fact: Many famous and successful scientists and engineers today were inspired by seeing the Moon landings when they were children.

Issue: The space race had dozens of spin-offs – technology that was developed for the space programme, but then has been useful on Earth too. Including lifesaving ways to detect cancer cells and many other medical improvements.

Question: Are we really going to just sit here on Earth, while there's a whole universe out there to explore?

Bill McIntosh – Spacecraft engineer

I've spent my life studying and designing spacecraft.

Of course I want us to send people to Mars! Partly just because it would be really amazing to see. But far more seriously - sooner or later we need to leave Earth, or we'll all be wiped out. Mars would be a first step and staging post.

Fact: So many things could destroy life on Earth. Climate change, nuclear war, we could be wiped out by an asteroid, like the dinosaurs, and we're overdue a super-volcano eruption. Or, if we last that long, our sun will burn out in 4.5 billion years.

Issue: While all the humans are on Earth, it's like we've got all our eggs in one basket. It's too easy for us to get obliterated!

Question: How else can we develop all the technology and knowledge we need to send humans into the rest of the solar system?

Sudarat Jaa – Planetary geologist

It's so tantalising seeing the bits of data that the Mars Rover has sent back. But it's so limited. Robots can't 'think on their feet', they can't interpret what they see and think of another question to ask or experiment to do. I'm just itching for us to send up a geologist with a hammer! We know Mars used to be more like Earth, with water and an atmosphere. What happened to it? Finding out could tell us a lot about Earth and our possible future.

Fact: It can take weeks of programming just to get the Mars Rover to go back ten metres and take another look at an interesting-looking rock they passed.

Issue: A team of people could find out more in a week than robot probes could in years.

Question: Don't you think we should go to Mars to learn as much as possible about what Earth's future might hold?

Greta Stevens – Aerospace engineer

I totally agree we need to send humans into space as a safeguard, like a sort of lifeboat if something happens to Earth. But I think Mars is the wrong mission. Too far away, too inhospitable, too difficult! We should start with a colony on the Moon.

Fact: We can get to the Moon in 3 days. The quickest journey to Mars would be about 7 months one way. And that's when Mars and Earth are at their closest, which only happens about every 2 years.

Issue: It's so much easier to get to the Moon, and to bring people or equipment back if there are any problems.

Question: What happens if someone falls ill or a crucial piece of equipment fails on Mars? It could be years before we could get there to help.

